例如:"lncRNA", "apoptosis", "WRKY"

FoxM1-mediated RFC5 expression promotes temozolomide resistance.

Cell Biol. Toxicol.2017 Dec;33(6):527-537. Epub 2017 Feb 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Although methylguanine-DNA-methyltransferase (MGMT) plays an important role in resistance to temozolomide (TMZ) in glioma, 40% of gliomas with MGMT inactivation are still resistant to TMZ. The underlying mechanism is not clear. Here, we report that forkhead box M1 (FoxM1) transcriptionally activates the expression of DNA repair gene replication factor C5 (RFC5) to promote TMZ resistance in glioma cells independent of MGMT activation. We showed that RFC5 expression is positively correlated with FoxM1 expression in human glioma cells and FoxM1 is able to transcriptionally activate RFC expression by interaction with the RFC5 promoter. Furthermore, knockdown of FoxM1 or RFC5 partially re-sensitizes glioma cells to TMZ. Consistently, thiostrepton, a FoxM1 inhibitor, in combination with TMZ significantly inhibits proliferation and promotes apoptosis in glioma cells. Taken together, these findings suggest that the FoxM1-RFC5 axis may mediate TMZ resistance and thiostrepton may serve as a potential therapeutic agent against TMZ resistance in glioma cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读