例如:"lncRNA", "apoptosis", "WRKY"

Regulation of neuronal morphogenesis by 14-3-3epsilon (Ywhae) via the microtubule binding protein, doublecortin.

Hum. Mol. Genet.2016 Oct 15;25(20):4405-4418
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


17p13.3 microduplication syndrome is a newly identified genetic disorder characterized by duplications in the 17p13.3 chromosome locus, resulting in a variety of disorders including autism spectrum disorder (ASD). Importantly, a minimum duplication region has been defined, and this region exclusively contains the gene encoding 14-3-3ε. Furthermore, duplication of this minimum region is strongly associated with the appearance of ASD in human patients, thus implicating the overexpression of 14-3-3ε in ASD. Using in vitro and in vivo techniques, we have found that 14-3-3ε binds to the microtubule binding protein doublecortin preventing its degradation. We also found that 14-3-3ε overexpression disrupts neurite formation by preventing the invasion of microtubules into primitive neurites, which can be rescued by the knockdown of doublecortin. To analyse the function of 14-3-3ε in neurite formation, we used 14-3-3ε flox mice and found that 14-3-3ε deficiency results in an increase in neurite formation. Our findings provide the first evidence of cellular pathology in 17p13.3 microduplication syndrome.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读