例如:"lncRNA", "apoptosis", "WRKY"

Ypk1 and Ypk2 kinases maintain Rho1 at the plasma membrane by flippase-dependent lipid remodeling after membrane stresses.

J. Cell. Sci.2017 Mar 15;130(6):1169-1178. Epub 2017 Feb 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The plasma membrane (PM) is frequently challenged by mechanical stresses. In budding yeast, TORC2-Ypk1/Ypk2 kinase cascade plays a crucial role in PM stress responses by reorganizing the actin cytoskeleton via Rho1 GTPase. However, the molecular mechanism by which TORC2-Ypk1/Ypk2 regulates Rho1 is not well defined. Here, we found that Ypk1/Ypk2 maintain PM localization of Rho1 under PM stress via spatial reorganization of the lipids including phosphatidylserine. Genetic evidence suggests that this process is mediated by the Lem3-containing lipid flippase. We propose that lipid remodeling mediated by the TORC2-Ypk1/Ypk2-Lem3 axis is a backup mechanism for PM anchoring of Rho1 after PM stress-induced acute degradation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which is responsible for Rho1 localization under normal conditions. Since all the signaling molecules studied here are conserved in higher eukaryotes, our findings might represent a general mechanism to cope with PM stress. © 2017. Published by The Company of Biologists Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读