例如:"lncRNA", "apoptosis", "WRKY"

Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone.

Proc. Natl. Acad. Sci. U.S.A.2017 Feb 14;114(7):1548-1553. Epub 2017 Jan 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读