[No authors listed]
Mammalian target of rapamycin (mTOR) plays a range of crucial roles in cell survival, growth, proliferation, metabolism, and morphology. However, mTOR forms two distinct complexes, mTOR complex 1 and mTOR complex 2 (mTORC1 and mTORC2), via association with a series of different components; this allows the complexes to execute their wide range of functions. This study explores further the composition of the mTORC2 complex. Utilizing Rictor knock-out cells, immunoprecipitation and mass spectrometry, a novel Rictor associated protein, heterogeneous nuclear ribonucleoprotein M (hnRNP M), was identified. The association between hnRNP M and Rictor was verified using recombinant and endogenous protein and the binding site was found to be within aa 1~532 of hnRNP M. The presence of hnRNP M significantly affects phosphorylation of SGK1 S422, but not of Akt S473, S657 and T560. Furthermore, hnRNP M also plays a critical role in muscle differentiation because knock-down of either hnRNP M or Rictor in C2C12 myoblasts reduced differentiation. This decrease is able to be rescued by overexpression SGK S422D in hnRNP M knockdown C2C12 myoblasts. Taken together, we have identified a novel Rictor/mTOR binding molecule, hnRNP M, that allows mTORC2 signaling to phosphorylate SGK1 thus regulating muscle differentiation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |