[No authors listed]
γδ T cell subsets can be characterized, in part, by their secretion of select proinflammatory cytokines. The molecular mechanisms driving the diverse fates of γδ T cells have not been elucidated. We have previously shown that the attachment of myristic acid to the N-terminal glycine of proteins, termed N-myristoylation, is essential for αβ T cell development and activation. Here, we explore the potential role of this lipid modification on the activation of γδ T cells. In the absence of N-myristoylation, the CD27+ γδ T cell subset was dominantly affected. The cells produced high levels of IFN-γ upon stimulation. In addition, they were more sensitive to inhibition of the CaN-Nfat pathway than were γδ T cells with myristoylated CaN. N-Myristoylation was found to modulate activity of phosphatase CaN, a regulator of Nfat. In summary, the CaN-Nfat pathway regulates development and function of IFN-γ-producing γδ T cells, and its balanced activity is strongly dependent on CaN N-myristoylation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |