例如:"lncRNA", "apoptosis", "WRKY"

Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress.

Ann Oncol. 2017 Mar 01;28(3):569-575
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background:Oxidative stress mitigated by antioxidant enzymes is thought to be involved in the progression to castration-resistant prostate cancer (CRPC) during androgen-deprivation therapy (ADT). This study investigated the association between genetic variations in antioxidant enzymes and the efficacy of ADT as well as its biological background. Patients and methods:The non-synonymous or promoter-locating polymorphisms of antioxidant enzymes were examined as well as the time to CRPC progression and overall survival in 104 and 92 patients treated with ADT for metastatic and non-metastatic prostate cancer, respectively. In addition, intracellular reactive oxygen species and expression levels of antioxidant enzymes were examined in castration-resistant and enzalutamide-resistant cells. Results:In metastatic prostate cancer, the AG/GG allele in GSTM3 rs7483 and CT/TT allele in CAT rs564250 were associated with a significantly lower risk of progression to CRPC and all-cause death compared with homozygotes of the major AA allele (hazard ratio [HR]; [95% confidence interval (CI)], 0.55 [0.34-0.86], P = 0.0086) and CC allele (HR; [95% CI], 0.48 [0.24-0.88], P = 0.016), respectively. On multivariate analyses, only GSTM3 rs7483 was associated with significant progression risk (AG/GG versus AA; HR; [95% CI], 0.45 [0.25-0.79], P = 0.0047) even after Bonferroni adjustment. In non-metastatic prostate cancer, the AG/GG allele in GSTM3 rs7483 was associated with a significantly lower risk of progression to CRPC (HR; [95% CI], 0.35 [0.10-0.93], P = 0.034) and all-cause death (HR; [95% CI], 0.26 [0.041-0.96], P = 0.043) compared with the AA allele. Intracellular reactive oxygen species levels were increased, accompanied with augmented GSTM3 expression in both castration-resistant and enzalutamide-resistant cells. Conclusions:Differential activity of antioxidant enzymes caused by the polymorphism in GSTM3 may contribute to resistance to hormonal therapy through oxidative stress. The GSTM3 rs7483 polymorphism may be a promising biomarker for prostate cancer patients treated with ADT.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读