例如:"lncRNA", "apoptosis", "WRKY"

Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes.

Nat. Struct. Mol. Biol.2017 Feb;24(2):162-170. Epub 2016 Dec 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Saccharomyces cerevisiae expresses two Pif1-family helicases-Pif1 and Rrm3-which have been reported to play distinct roles in numerous nuclear processes. Here, we systematically characterized the roles of Pif1 helicases in replisome progression and lagging-strand synthesis in S. cerevisiae. We demonstrate that either Pif1 or Rrm3 redundantly stimulates strand displacement by DNA polymerase δ during lagging-strand synthesis. By analyzing replisome mobility in pif1 and rrm3 mutants, we show that Rrm3, with a partially redundant contribution from Pif1, suppresses widespread terminal arrest of the replisome at tRNA genes. Although both head-on and codirectional collisions induce replication-fork arrest at tRNA genes, head-on collisions arrest a higher proportion of replisomes. In agreement with this observation, we found that head-on collisions between tRNA transcription and replication are under-represented in the S. cerevisiae genome. We demonstrate that tRNA-mediated arrest is R-loop independent and propose that replisome arrest and DNA damage are mechanistically separable.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读