[No authors listed]
G proteins are part of the G-protein-coupled receptor (GPCR) signal transduction cascade in which they transfer a signal from the membrane-embedded GPCR to other proteins in the cell. In the case of the inhibitory G-protein heterotrimer, permanent N-terminal myristoylation can transiently localize the Gαi subunit at the membrane as well as crucially influence Gαi's function in the GTP-bound conformation. The attachment of lipids to proteins is known to be essential for membrane trafficking; however, our results suggest that lipidation is also important for protein-protein interactions during signal transduction. Here we investigate the effect of myristoylation on the structure and dynamics of soluble Gαi1 and its possible implication for signal transduction. A 2 μs classical molecular dynamics simulation of a myristoylated Gαi1-GTP complex suggests that the myristoyl-induced conformational changes of the switch II and alpha helical domains create new possibilities for protein-protein interactions and emphasize the importance of permanent lipid attachment for the conformation and functional tunability of signaling proteins.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |