例如:"lncRNA", "apoptosis", "WRKY"

NCK Associated Protein 1 Modulated by miRNA-214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia.

J Am Heart Assoc. 2016 Dec 07;5(12)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:MicroRNA miR-214 has been implicated in many biological cellular functions, but the impact of miR-214 and its target genes on vascular smooth muscle cell (VSMC) proliferation, migration, and neointima smooth muscle cell hyperplasia is unknown. METHODS AND RESULTS:Expression of miR-214 was closely regulated by different pathogenic stimuli in VSMCs through a transcriptional mechanism and decreased in response to vascular injury. Overexpression of miR-214 in serum-starved VSMCs significantly decreased VSMC proliferation and migration, whereas knockdown of miR-214 dramatically increased VSMC proliferation and migration. Gene and protein biochemical assays, including proteomic analyses, showed that NCK associated protein 1 (NCKAP1)-a major component of the WAVE complex that regulates lamellipodia formation and cell motility-was negatively regulated by miR-214 in VSMCs. Luciferase assays showed that miR-214 substantially repressed wild-type but not the miR-214 binding site mutated version of NCKAP1 3' untranslated region luciferase activity in VSMCs. This result confirmed that NCKAP1 is the functional target of miR-214 in VSMCs. NCKAP1 knockdown in VSMCs recapitulates the inhibitory effects of miR-214 overexpression on actin polymerization, cell migration, and proliferation. Data from cotransfection experiments also revealed that inhibition of NCKAP1 is required for miR-214-mediated lamellipodia formation, cell motility, and growth. Importantly, locally enforced expression of miR-214 in the injured vessels significantly reduced NCKAP1 expression levels, inhibited VSMC proliferation, and prevented neointima smooth muscle cell hyperplasia after injury. CONCLUSIONS:We uncovered an important role of miR-214 and its target gene NCKAP1 in modulating VSMC functions and neointima hyperplasia. Our findings suggest that miR-214 represents a potential therapeutic target for vascular diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读