例如:"lncRNA", "apoptosis", "WRKY"

Activin A induces skeletal muscle catabolism via p38β mitogen-activated protein kinase.

J Cachexia Sarcopenia Muscle. 2017 Apr;8(2):202-212. doi:10.1002/jcsm.12145. Epub 2016 Sep 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Activation of type IIB activin receptor (ActRIIB) in skeletal muscle leads to muscle atrophy because of increased muscle protein degradation. However, the intracellular signalling mechanism that mediates ActRIIB-activated muscle catabolism is poorly defined. METHODS:We investigated the role of p38β mitogen-activated protein kinases (MAPK) in mediating ActRIIB ligand activin A-activated muscle catabolic pathways in C2C12 myotubes and in mice with perturbation of this kinase pharmacologically and genetically. RESULTS:Treatment of C2C12 myotubes with activin A or myostatin rapidly activated p38 MAPK and its effector C/EBPβ within 1 h. Paradoxically, Akt was activated at the same time through a p38 MAPK-independent mechanism. These events were followed by up-regulation of ubiquitin ligases atrogin1 (MAFbx) and UBR2 (E3α-II), as well as increase in LC3-II, a marker of autophagosome formation, leading to myofibrillar protein loss and myotube atrophy. The catabolic effects of activin A were abolished by p38α/β MAPK inhibitor SB202190. Using small interfering RNA-mediated gene knockdown, we found that the catabolic activity of activin A was dependent on p38β MAPK specifically. Importantly, systemic administration of activin A to mice similarly activated the catabolic pathways in vivo, and this effect was blocked by SB202190. Further, activin A failed to activate the catabolic pathways in mice with muscle-specific knockout of p38β MAPK. Interestingly, activin A up-regulated MuRF1 in a p38 MAPK-independent manner, and MuRF1 did not appear responsible for activin A-induced myosin heavy chain loss and muscle atrophy. CONCLUSIONS:ActRIIB-mediated activation of muscle catabolism is dependent on p38β MAPK-activated signalling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读