例如:"lncRNA", "apoptosis", "WRKY"

Beneficial Effects of Myo-Inositol Oxygenase Deficiency in Cisplatin-Induced AKI.

J. Am. Soc. Nephrol.2017 May;28(5):1421-1436. Epub 2016 Nov 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Overexpression of the proximal tubular enzyme myo-inositol oxygenase (MIOX) induces oxidant stress in vitro However, the relevance of MIOX to tubular pathobiology remains enigmatic. To investigate the role of MIOX in cisplatin-induced tubular AKI, we generated conditional MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX-knockout (MIOX(-/-)) mice with tubule-specific MIOX overexpression or knockout, respectively. Compared with cisplatin-treated wild-type (WT) mice, cisplatin-treated MIOX-TG mice had even greater increases in urea, creatinine, and KIM-1 levels and more tubular injury and apoptosis, but these effects were attenuated in cisplatin-treated MIOX(-/-) mice. Similarly, MIOX-TG mice had the highest and MIOX(-/-) mice had the lowest renal levels of Bax, cleaved caspase-3, and NADPH oxidase-4 expression and reactive oxygen species generation after cisplatin treatment. In vitro, cisplatin dose-dependently increased generation in LLC-PK1 cells. Furthermore, MIOX overexpression in these cells accentuated cisplatin-induced duanyu1670 generation and perturbations in the ratio of GSH to oxidized GSH, whereas MIOX-siRNA or N-acetyl cysteine treatment attenuated these effects. Additionally, the cisplatin-induced enhancement of p53 activation, NF-κB binding to DNA, and NF-κB nuclear translocation in WT mice was exacerbated in MIOX-TG mice but absent in MIOX(-/-) mice. In vitro, MIOX-siRNA or NAC treatment reduced the dose-dependent increase in p53 expression induced by cisplatin. We also observed a remarkable influx of inflammatory cells and upregulation of cytokines in kidneys of cisplatin-treated MIOX-TG mice. Finally, analysis of genomic DNA in WT mice revealed cisplatin-induced hypomethylation of the MIOX promoter. These data suggest that MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读