[No authors listed]
EXT-induced arteriolar adaptations in skeletal muscle are heterogeneous because of spatial variations in muscle fiber type composition and fiber recruitment patterns during exercise. The purpose of this report is to summarize a series of experiments conducted to test the hypothesis that changes in vascular gene expression are signaled by alterations in shear stress resulting from increases in blood flow, muscle fiber type composition, and fiber recruitment patterns. We also report results from a follow-up study of Ankrd23, one gene whose expression was changed by EXT. We expected to see differences in magnitude of changes in gene expression along arteriolar trees and between/among arteriolar trees but similar directional changes. However, transcriptional profiles of arterioles/arteries from OLETF rats exposed to END or SIT reveal that EXT does not lead to similar directional changes in the transcriptome among arteriolar trees of different skeletal muscles or along arteriolar trees within a particular muscle. END caused the most changes in gene expression in 2A arterioles of soleus and white gastrocnemius with little to no changes in the FAs. Ingenuity Pathway Analysis across vessels revealed significant changes in gene expression in 18 pathways. EXT increased expression of some genes (Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein-binding protein, alpha (Gnat1), and Bcl2l1) in all arterioles examined, but decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). Many contractile and/or structural protein genes were increased by SIT in the gastrocnemius FA, but the same genes exhibited decreased expression in red gastrocnemius arterioles. Ankrd23 mRNA levels increased with increasing branch order in the gastrocnemius arteriolar tree and were increased 19-fold in gastrocnemius muscle FA by SIT. Follow-up experiments indicate that Ankrd23 mRNA level was increased 14-fold in cannulated gastrocnemius FA when intraluminal pressure was increased from 90 and 180 cm H2O for 4 hours. Also, Ankrd23-/- mice exhibit limited ability to form collateral arteries following femoral artery occlusion compared to WT mice (angioscore WT=0.18±0.03; Ankrd23-/- =0.04±0.01). Further research will be required to determine whether Ankrd23 plays an important role in mechanically induced vascular remodeling of the arterial tree in skeletal muscle.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |