[No authors listed]
MicroRNAs have emerged as pivotal regulators in various physiological and pathological processes, including osteogenesis. Here we discuss the contribution of miR-5100 to osteoblast differentiation and mineralization. We found that miR-5100 was upregulated during osteoblast differentiation in ST2 and MC3T3-E1 cells. Next, we verified that miR-5100 can promote osteogenic differentiation with gain-of-function and loss-of-function experiments. Target prediction analysis and experimental validation demonstrated that Tob2, which acts as a negative regulator of osteogenesis, was negatively regulated by miR-5100. Furthermore, we confirmed that the important bone-related transcription factor osterix, which can be degraded by binding to Tob2, was influenced by miR-5100 during osteoblast differentiation. Collectively, our results revealed a new molecular mechanism that fine-tunes osteoblast differentiation through miR-5100/Tob2/osterix networks.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |