例如:"lncRNA", "apoptosis", "WRKY"

The Major Replicative Histone Chaperone CAF-1 Suppresses the Activity of the DNA Mismatch Repair System in the Cytotoxic Response to a DNA-methylating Agent.

J Biol Chem. 2016 Dec 30;291(53):27298-27312. Epub 2016 Nov 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The DNA mismatch repair (MMR) system corrects DNA mismatches in the genome. It is also required for the cytotoxic response of O6-methylguanine-DNA methyltransferase (MGMT)-deficient mammalian cells and yeast mgt1Δ rad52Δ cells to treatment with Sn1-type methylating agents, which produce cytotoxic O6-methylguanine (O6-mG) DNA lesions. Specifically, an activity of the MMR system causes degradation of irreparable O6-mG-T mispair-containing DNA, triggering cell death; this process forms the basis of treatments of MGMT-deficient cancers with Sn1-type methylating drugs. Recent research supports the view that degradation of irreparable O6-mG-T mispair-containing DNA by the MMR system and CAF-1-dependent packaging of the newly replicated DNA into nucleosomes are two concomitant processes that interact with each other. Here, we studied whether CAF-1 modulates the activity of the MMR system in the cytotoxic response to Sn1-type methylating agents. We found that CAF-1 suppresses the activity of the MMR system in the cytotoxic response of yeast mgt1Δ rad52Δ cells to the prototypic Sn1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. We also report evidence that in human MGMT-deficient cell-free extracts, CAF-1-dependent packaging of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system. Taken together, these findings suggest that CAF-1-dependent incorporation of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system, thereby defending the cell against killing by the Sn1-type methylating agent.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读