例如:"lncRNA", "apoptosis", "WRKY"

Partial deficiency of CTRP12 alters hepatic lipid metabolism.

Physiol. Genomics. 2016 Dec 01;48(12):936-949. Epub 2016 Nov 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Secreted hormones play pivotal roles in tissue cross talk to maintain physiologic blood glucose and lipid levels. We previously showed that C1q/TNF-related protein 12 (CTRP12) is a novel secreted protein involved in regulating glucose metabolism whose circulating levels are reduced in obese and insulin-resistant mouse models. Its role in lipid metabolism, however, is unknown. Using a novel heterozygous mouse model, we show that the loss of a single copy of the Ctrp12 gene (also known as Fam132a and adipolin) affects whole body lipid metabolism. In Ctrp12 (+/-) male mice fed a control low-fat diet, hepatic fat oxidation was upregulated while hepatic VLDL-triglyceride secretion was reduced relative to wild-type (WT) littermates. When challenged with a high-fat diet, Ctrp12 (+/-) male mice had impaired lipid clearance in response to acute lipid gavage, reduced hepatic triglyceride secretion, and greater steatosis with higher liver triglyceride and cholesterol levels. Unlike male mice, Ctrp12 (+/-) female mice fed a control low-fat diet were indistinguishable from WT littermates. When obesity was induced by high-fat feeding, Ctrp12 (+/-) female mice developed mild insulin resistance with impaired insulin tolerance. In contrast to male mice, hepatic triglyceride secretion was increased in Ctrp12 (+/-) female mice fed a high-fat diet. Thus, in different dietary and metabolic contexts, loss of a single Ctrp12 allele affects glucose and lipid metabolism in a sex-dependent manner, highlighting the importance of genetic and environmental determinants of metabolic phenotypes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读