例如:"lncRNA", "apoptosis", "WRKY"

Drosophila IRBP bZIP heterodimer binds P-element DNA and affects hybrid dysgenesis.

Proc. Natl. Acad. Sci. U.S.A.2016 Nov 15;113(46):13003-13008. Epub 2016 Oct 31
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In Drosophila, P-element transposition causes mutagenesis and genome instability during hybrid dysgenesis. The P-element 31-bp terminal inverted repeats (TIRs) contain sequences essential for transposase cleavage and have been implicated in DNA repair via protein-DNA interactions with cellular proteins. The identity and function of these cellular proteins were unknown. Biochemical characterization of proteins that bind the TIRs identified a heterodimeric basic leucine zipper (bZIP) complex between an uncharacterized protein that we termed "Inverted Repeat Binding Protein (IRBP) 18" and its partner Xrp1. The reconstituted IRBP18/Xrp1 heterodimer binds sequence-specifically to its dsDNA-binding site within the P-element TIRs. Genetic analyses implicate both proteins as critical for repair of DNA breaks following transposase cleavage in vivo. These results identify a cellular protein complex that binds an active mobile element and plays a more general role in maintaining genome stability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读