例如:"lncRNA", "apoptosis", "WRKY"

G6PC3, ALDOA and CS induction accompanies mir-122 down-regulation in the mechanical asphyxia and can serve as hypoxia biomarkers.

Oncotarget. 2016 Oct 26;7(46):74526-74536
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Hypoxia influences different cellular biological processes. To reveal the dynamics of hypoxia's effects on miRNA regulation in vivo, we examined the expression levels of all miRNAs in human brain and heart specimens from cases of mechanical asphyxia compared with those from cases of craniocerebral injury and hemorrhagic shock. We further validated differently expressed miRNAs in another 84 human specimens and rat models. We found that mir-122 was significantly down-regulated and that its putative targets G6PC3, ALDOA and CS were increased in the brain and cardiac tissues in cases of mechanical asphyxia compared with craniocerebral injury and hemorrhagic shock. Our data indicate that mir-122 and its targets G6PC3, ALDOA and CS play roles in the hypoxia responses that regulate glucose and energy metabolism and can serve as hypoxia biomarkers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读