[No authors listed]
Axonal branch formation and synaptogenesis are sequential events that are required for the establishment of neuronal connectivity. However, little is known about how the transition between these two events is regulated. Here, we report that the lin-4 microRNA can regulate the transition between branch formation and synaptogenesis in the PLM axon of C. elegans. The PLM axon grows a collateral branch during the early L1 stage and undergoes synaptogenesis during the late L1 stage. Loss of the lin-4 microRNA disrupts synaptogenesis during the late L1 stage, suggesting that lin-4 promotes synaptogenesis. Conversely, the target of lin-4, the LIN-14 transcription factor, promotes PLM branch formation and inhibits synaptogenesis during the early L1 stage. Moreover, we present genetic evidence suggesting that synaptic vesicle transport is required for PLM branch formation and that the role of LIN-14 is to promote transport of synaptic vesicles to the region of future branch growth. These observations provide a novel mechanism whereby lin-4 promotes the transition from branch formation to synaptogenesis by repressing the branch-promoting and synaptogenesis-inhibiting activities of LIN-14.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |