例如:"lncRNA", "apoptosis", "WRKY"

Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis.

Sci Rep. 2016 Oct 13;6:35026
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Ribosome biogenesis plays key roles in cell growth by providing increased capacity for protein synthesis. It requires coordinated production of ribosomal proteins (RP) and ribosomal RNA (rRNA), including the processing of the latter. Here, we show that, the depletion of RPS19 causes a reduction of rRNA synthesis in cell lines of both erythroid and non-erythroid origin. A similar effect is observed upon depletion of RPS6 or RPL11. The deficiency of RPS19 does not alter the stability of rRNA, but instead leads to an inhibition of I (Pol I) activity. In fact, results of nuclear run-on assays and ChIP experiments show that association of Pol I with the rRNA gene is reduced in RPS19-depleted cells. The phosphorylation of three known regulators of Pol I, CDK2, AKT and AMPK, is altered during ribosomal stress and could be involved in the observed downregulation. Finally, RNA from patients with Diamond Blackfan Anemia (DBA), shows, on average, a lower level of 47S precursor. This indicates that inhibition of rRNA synthesis could be one of the molecular alterations at the basis of DBA.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读