例如:"lncRNA", "apoptosis", "WRKY"

Effects of a Polymorphism of the Neuronal Amino Acid Transporter SLC6A15 Gene on Structural Integrity of White Matter Tracts in Major Depressive Disorder.

PLoS ONE. 2016 Oct 10;11(10):e0164301. eCollection 2016
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The SLC6A15 gene has been identified as a novel candidate gene for major depressive disorder (MDD). It is presumed to be involved in the pathophysiology of MDD through regulation of glutamate transmission in the brain. However, the involvement of this gene in microstructural changes in white matter (WM) tracts remains unclear. We aimed to investigate the influence of a polymorphism of this gene (rs1545853) on the structural integrity of WM tracts in the cortico-limbic network. METHODS:Eighty-six patients with MDD and 64 healthy controls underwent T1-weighted structural magnetic resonance imaging, including diffusion tensor imaging (DTI), and genotype analysis. We selected the genu of the corpus callosum, the uncinate fasciculus, cingulum, and fornix as regions of interest, and extracted fractional anisotropy (FA) values using the FMRIB Diffusion Toolbox software. RESULTS:FA values for the left parahippocampal cingulum (PHC) was significantly reduced in the patients with MDD compared to healthy control participants (p = 0.004). We also found that MDD patients with the A allele showed reduced FA values for the left PHC than did healthy controls with the A allele (p = 0.012). There was no significant difference in the FA value of left PHC for the comparison between the G homozygotes of MDD and healthy control group. CONCLUSIONS:We observed an association between the risk allele of the SLC6A15 gene rs1545843 and the WM integrity of the PHC in MDD patients, which is known to play an important role in the neural circuit involved in emotion processing.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读