例如:"lncRNA", "apoptosis", "WRKY"

Bidirectional regulation of fragile X mental retardation protein phosphorylation controls rhodopsin homoeostasis.

J Mol Cell Biol. 2017 Apr 01;9(2):104-116
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Homoeostatic regulation of the light sensor, rhodopsin, is critical for the maintenance of light sensitivity and survival of photoreceptors. The major fly rhodopsin, Rh1, undergoes light-induced endocytosis and degradation, but its protein and mRNA levels remain constant during light/dark cycles. It is not clear how translation of Rh1 is regulated. Here, we show that adult photoreceptors maintain a constant, abundant quantity of ninaE mRNA, which encodes Rh1. We demonstrate that the Fmr1 protein associates with ninaE mRNA and represses its translation. Further, light exposure triggers a calcium-dependent dephosphorylation of Fmr1, which relieves suppression of Rh1 translation. We demonstrate that Mts, the catalytic subunit of protein phosphatase 2A (PP2A), mediates light-induced Fmr1 dephosphorylation in a regulatory B subunit of PP2A (CKa)-dependent manner. Finally, we show that blocking light-induced Rh1 translation results in reduced light sensitivity. Our results reveal the molecular mechanism of Rh1 homoeostasis and physiological consequence of Rh1 dysregulation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读