例如:"lncRNA", "apoptosis", "WRKY"

Discovery of novel targets for antivirals: learning from flies.

Curr Opin Virol. 2016 Oct;20:64-70. Epub 2016 Sep 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Developing antiviral drugs is challenging due to the small number of targets in viruses, and the rapid evolution of viral genes. Animals have evolved a number of efficient antiviral defence mechanisms, which can serve as a source of inspiration for novel therapies. The genetically tractable insect Drosophila belongs to the most diverse group of animals. Genetic and transcriptomic analyses have recently identified Drosophila genes encoding viral restriction factors. Some of them represent evolutionary novelties and their characterization may provide hints for the design of directly acting antivirals. In addition, functional screens revealed conserved host factors required for efficient viral translation, such as the ribosomal protein RACK1 and the release factor Pelo. These proteins are promising candidates for host-targeted antivirals.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读