[No authors listed]
BACKGROUND:Mitochondrial dysfunction is one of the leading causes of neurological disorders in humans. Mitochondrial perturbations lead to adaptive mechanisms that include HIF-1 stabilization, though the consequences of increased levels of HIF-1 following mitochondrial stress remain poorly understood. RESULTS:Using Caenorhabditis elegans, we show that a hif-1 loss-of-function mutation confers resistance towards the mitochondrial toxin ethidium bromide (EtBr) and suppresses EtBr-induced production of In mammals, the PD-related gene DJ-1 is known to act as a redox sensor to confer protection against antioxidants and mitochondrial inhibitors. A deletion mutant of the C. elegans homolog djr-1.1 also showed increased resistance to EtBr. Furthermore, our data implicates p38 MAP kinase as an indispensable factor for survival against mitochondrial stress in both hif-1 and djr-1.1Â mutants. CONCLUSIONS:We propose that EtBr-induced HIF-1 activates pathways that are antagonistic in conferring protection against EtBr toxicity and that blocking HIF-1 activity may promote survival in cells with compromised mitochondrial function.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |