例如:"lncRNA", "apoptosis", "WRKY"

Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.

Biotechnol J. 2016 Aug 16. doi:10.1002/biot.201600042. Epub 2016 Aug 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Galactose and glucose are two of the most abundant monomeric sugars in hydrolysates of marine biomasses. While Saccharomyces cerevisiae can ferment galactose, its uptake is tightly controlled in the presence of glucose by catabolite repression. It is desirable to construct engineered strains capable of simultaneous utilization of glucose and galactose for producing biofuels and chemicals from marine biomass. In this study, the MTH1 gene coding for transcription factor in glucose signaling was mutated in a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae expressing heterologous 2,3-butanediol (2,3-BD) biosynthetic genes. The engineered S. cerevisiae strain consumed glucose and galactose simultaneously and produced 2,3-BD as a major product. Total sugar consumption rates increased with a low ratio of glucose/galactose, though, occurrence of the glucose depletion in a fed-batch fermentation decreased 2,3-BD production substantially. Through optimizing the profiles of sugar concentrations in a fed-batch cultivation with the engineered strain, 99.1 ± 1.7 g/L 2,3-BD was produced in 143 hours with a yield of 0.353 ± 0.022 g 2,3-BD/g sugars. This result suggests that simultaneous and efficient utilization of glucose and galactose by the engineered yeast might be applicable to the economical production of not only 2,3-BD, but also other biofuels and chemicals from marine biomass.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读