例如:"lncRNA", "apoptosis", "WRKY"

CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence.

RNA. 2016 Oct;22(10):1550-9. Epub 2016 Aug 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs (miRNAs) recruit the CCR4-NOT complex, which contains two deadenylases, CCR4 and CAF1, to promote shortening of the poly(A) tail. Although both CCR4 and CAF1 generally have a strong preference for poly(A) RNA substrates, it has been reported from yeast to humans that they can also remove non-A residues in vitro to various degrees. However, it remains unknown how CCR4 and CAF1 remove non-A sequences. Herein we show that Drosophila miRNAs can promote the removal of 3'-terminal non-A residues in an exonucleolytic manner, but only if an upstream poly(A) sequence exists. This non-A removing reaction is directly catalyzed by both CCR4 and CAF1 and depends on the balance between the length of the internal poly(A) sequence and that of the downstream non-A sequence. These results suggest that the CCR4-NOT complex has an intrinsic activity to remove the 3'-terminal non-A modifications downstream from the poly(A) tail.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读