例如:"lncRNA", "apoptosis", "WRKY"

Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival.

Mol. Cell. Endocrinol.2016 Nov 15;436:102-13. Epub 2016 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p < 0.05) decreased food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p < 0.05 to p < 0.001) glucose, alanine and GLP-1 stimulated insulin secretion from immortalised rodent and human beta-cells, as well as isolated mouse islets, by impeding alterations in membrane potential, [Ca(2+)]i and elevations of cAMP. Mice treated with multiple low dose streptozotocin presented with severe (p < 0.01) loss of beta-cell mass accompanied by notable increases (p < 0.001) in alpha and PP cell numbers. In contrast, hydrocortisone-induced insulin resistance increased islet number (p < 0.01) and beta-cell mass (p < 0.001). PYY expression was consistently observed in alpha-, PP- and delta-, but not beta-cells. Streptozotocin decreased islet PYY co-localisation with PP (p < 0.05) and somatostatin (p < 0.001), whilst hydrocortisone increased PYY co-localisation with glucagon (p < 0.05) in mice. More detailed in vitro investigations revealed that both forms of PYY augmented (p < 0.05 to p < 0.01) immortalised human and rodent beta-cell proliferation and protected against streptozotocin-induced cytotoxicity, to a similar or superior extent as the well characterised beta-cell proliferative and anti-apoptotic agent GLP-1. Taken together, these data highlight the significance and potential offered by modulation of pancreatic islet NPY receptor signalling pathways for preservation of beta-cell mass in diabetes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读