例如:"lncRNA", "apoptosis", "WRKY"

Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using 14N/15N and solvent isotope effects.

. 2016 Nov;108:203-211. Epub 2016 Jul 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Glutamine synthetase (GS, EC 6.3.1.2) catalyzes the production of glutamine from glutamate, ammonium and ATP. Although being essential in plants for N assimilation and recycling, kinetic commitments and transition states of the reaction have not been clearly established yet. Here, we examined 12C/13C, 14N/15N and H2O/D2O isotope effects in Arabidopsis GS1 catalysis and compared to the prokaryotic (Escherichia coli) enzyme. A14N/15N isotope effect (15V/K ≈ 1.015, with respect to substrate NH4+) was observed in the prokaryotic enzyme, indicating that ammonium utilization (deprotonation and/or amidation) was partially rate-limiting. In the plant enzyme, the isotope effect was inverse (15V/K = 0.965), suggesting that the reaction intermediate is involved in an amidation-deamidation equilibrium favoring 15N. There was no 12C/13C kinetic isotope effect (13V/K = 1.000), suggesting that the amidation step of the catalytic cycle involves a transition state with minimal alteration of overall force constants at the C-5 carbon. Surprisingly, the solvent isotope effect was found to be inverse, that is, with a higher turn-over rate in heavy water (DV ≈ 0.5), showing that restructuration of the active site due to displacement of H2O by D2O facilitates the processing of intermediates.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读