例如:"lncRNA", "apoptosis", "WRKY"

Disruption of an EAAT-Mediated Chloride Channel in a Drosophila Model of Ataxia.

J. Neurosci.2016 Jul 20;36(29):7640-7
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


UNLABELLED:Patients with Type 6 episodic ataxia (EA6) have mutations of the excitatory amino acid transporter EAAT1 (also known as GLAST), but the underlying pathophysiological mechanism for EA6 is not known. EAAT1 is a glutamate transporter expressed by astrocytes and other glia, and it serves dual function as an anion channel. One EA6-associated mutation is a P>R substitution (EAAT1(P>R)) that in transfected cells has a reduced rate of glutamate transport and an abnormal anion conductance. We expressed this EAAT1(P>R) mutation in glial cells of Drosophila larvae and found that these larvae exhibit episodic paralysis, and their astrocytes poorly infiltrate the CNS neuropil. These defects are not seen in Eaat1-null mutants, and so they cannot be explained by loss of glutamate transport. We instead explored the role of the abnormal anion conductance of the EAAT1(P>R) mutation, and to do this we expressed chloride cotransporters in astrocytes. Like the EAAT1(P>R) mutation, the chloride-extruding K(+)-Cl(-) cotransporter KccB also caused astroglial malformation and paralysis, supporting the idea that the EAAT1(P>R) mutation causes abnormal chloride flow from CNS glia. In contrast, the Na(+)-K(+)-Cl(-) cotransporter Ncc69, which normally allows chloride into cells, rescued the effects of the EAAT1(P>R) mutation. Together, our results indicate that the cytopathology and episodic paralysis in our Drosophila EA6 model stem from a gain-of-function chloride channelopathy of glial cells. SIGNIFICANCE studied a mutation found in episodic ataxia of the dual-function glutamate transporter/anion channel EAAT1, and discovered it caused malformation of astrocytes and episodes of paralysis in a Drosophila model. These effects were mimicked by a chloride-extruding cotransporter and were rescued by restoring chloride homeostasis to glial cells with a Na(+)-K(+)-2Cl(-) cotransporter. Our findings reveal a new pathophysiological mechanism in which astrocyte cytopathology and neural circuit dysfunction arise via disruption of the ancillary function of EAAT1 as a chloride channel. In some cases, this mechanism might also be important for neurological diseases related to episodic ataxia, such as hemiplegia, migraine, and epilepsy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读