[No authors listed]
The molecular mechanisms regulating neural progenitor (NP) proliferation are fundamental in establishing the cytoarchitecture of the mammalian neocortex. The rate of cell-cycle progression and a fine-tuned balance between cell-cycle re-entry and exit determine the numbers of both NPs and neurons as well as postmitotic neuronal laminar distribution in the cortical wall. Here, we demonstrate that the microRNA (miRNA) miR-210 is required for normal mouse NP cell-cycle progression. Overexpression of miR-210 promotes premature cell-cycle exit and terminal differentiation in NPs, resulting in an increase in early-born postmitotic neurons. Conversely, miR-210 knockdown promotes an increase in the radial glial cell population and delayed differentiation, resulting in an increase in late-born postmitotic neurons. Moreover, the cyclin-dependent kinase CDK7 is regulated by miR-210 and is necessary for normal NP cell-cycle progression. Our findings demonstrate that miRNAs are essential for normal NP proliferation and cell-cycle progress during neocortical development.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |