例如:"lncRNA", "apoptosis", "WRKY"

Massive excretion of calcium oxalate from late prepupal salivary glands of Drosophila melanogaster demonstrates active nephridial-like anion transport.

Dev. Growth Differ.2016 Aug;58(6):562-74. doi:10.1111/dgd.12300. Epub 2016 Jul 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3-4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读