例如:"lncRNA", "apoptosis", "WRKY"

Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity.

Sci Rep. 2016 Jul 05;6:29097
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读