[No authors listed]
BACKGROUND:Calmodulin (CaM) mutations are associated with cardiac arrhythmia susceptibility including congenital long QT syndrome (LQTS). OBJECTIVE:The purpose of this study was to determine the clinical, genetic, and functional features of 2 novel CaM mutations in children with life-threatening ventricular arrhythmias. METHODS:The clinical and genetic features of 2 congenital arrhythmia cases associated with 2 novel CaM gene mutations were ascertained. Biochemical and functional investigations were conducted on the 2 mutations. RESULTS:A novel de novo CALM2 mutation (D132H) was discovered by candidate gene screening in a male infant with prenatal bradycardia born to healthy parents. Postnatal course was complicated by profound bradycardia, prolonged corrected QT interval (651 ms), 2:1 atrioventricular block, and cardiogenic shock. He was resuscitated and was treated with a cardiac device. A second novel de novo mutation in CALM1 (D132V) was discovered by clinical exome sequencing in a 3-year-old boy who suffered a witnessed cardiac arrest secondary to ventricular fibrillation. Electrocardiographic recording after successful resuscitation revealed a prolonged corrected QT interval of 574 ms. The Ca(2+) affinity of CaM-D132H and CaM-D132V revealed extremely weak binding to the C-terminal domain, with significant structural perturbations noted for D132H. Voltage-clamp recordings of human induced pluripotent stem cell-derived cardiomyocytes transiently expressing wild-type or mutant CaM demonstrated that both mutations caused impaired Ca(2+)-dependent inactivation of voltage-gated Ca(2+) current. Neither mutant affected voltage-dependent inactivation. CONCLUSION:Our findings implicate impaired Ca(2+)-dependent inactivation in human cardiomyocytes as the plausible mechanism for long QT syndrome associated with 2 novel CaM mutations. The data further expand the spectrum of genotype and phenotype associated with calmodulinopathy.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |