例如:"lncRNA", "apoptosis", "WRKY"

B and T Lymphocyte Attenuator is a Target of miR-155 during Naïve CD4+ T Cell Activation.

Iran J Immunol. 2016 Jun;13(2):89-99
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:MicroRNA-155 (miR-155) is upregulated during T cell activation, but the exact mechanisms by which it influences CD4+ T cell activation remain unclear. OBJECTIVE:To examine whether the B and T lymphocyte attenuator (BTLA) is a target of miR-155 during naïve CD4+ T cell activation. METHODS:Firefly luciferase reporter plasmids pEZX-MT01-wild-type-BTLA and pEZX-MT01-mutant-BTLA were constructed. Lymphocytes were nucleofected with miR-155 inhibitor or negative control (NC). Then, naïve CD4+ CD62L+ helper T cells purified from lymphocytes were stimulated with immobilized antibody to CD3 and soluble antibody to CD28. miR-155 and BTLA expression were examined by real-time RT-PCR. Cell surface CD69 expression and IL-2 secretion were measured by ELISA and flowcytometry, respectively. RESULTS:Luciferase reporter assay showed that miR-155 targeted the BTLA 3'UTR region. Compared with non-stimulated condition, both miR-155 and BTLA mRNA expression were upregulated after T cell activation. Similar results were observed for BLTA protein expression. Compared with NC, the miR-155 inhibitor decreased miR-155 by about 45%, but did not influence BTLA mRNA expression. Compared with NC, the miR-155 inhibitor decreased the surface BTLA expression by about 60%. Upregulation of BTLA in miR-155 knockdown CD4+ T cells did not influence the cell surface expression of CD69, an early activation marker (p=0.523). Similarly, IL-2 production was not changed. CONCLUSION:miR-155 is involved in the inhibition of BTLA during CD4+ T cell activation. These results might serve as a basis for an eventual therapeutic manipulation of this pathway to treat inflammatory and autoimmune diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读