例如:"lncRNA", "apoptosis", "WRKY"

Regulation of angiogenin expression and epithelial-mesenchymal transition by HIF-1α signaling in hypoxic retinal pigment epithelial cells.

Biochim. Biophys. Acta. 2016 Sep;1862(9):1594-607. Epub 2016 May 31
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Choroidal neovascularization (CNV) is a major cause of vision loss in many retinal diseases. Hypoxia is determined to be a key inducer of CNV and hypoxia-inducible factor-1 (HIF-1) is an important transcription factor. Epithelial-mesenchymal transition (EMT) and the synthesis of proangiogenic cytokines make great contributions to the development of CNV. In the present study, the role of HIF-1α signaling in the regulation of angiogenin (ANG) expression and EMT in hypoxic retinal pigment epithelial cells was investigated. A significant elevation expression of ANG expression level in a mouse model of laser-induced CNV was demonstrated. In a hypoxic model of an increased expression level of ANG and induction of EMT accompanied with stabilization and nucleus translocation of HIF-1α. Blockage of HIF-1α signaling resulted in inhibition of high expression of ANG and EMT features. The direct interaction between HIF-1α and ANG promoter region was identified by ChIP-qPCR. The association of RNase 4 mRNA level with HIF-1α signaling was also clarified in APRE-19. Moreover, the exogenous ANG translocated into the nucleus, enhanced 45S rRNA transcription, promoted cell proliferation and tube formation in human retinal microvascular endothelial cells. In conclusion, the hypoxic conditions regulate the expression of ANG and EMT via an activation of HIF-1α signaling. It provides molecular evidence for potential therapy strategies of treating CNV.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读