[No authors listed]
The import of acetyl-CoA into the lumen of the endoplasmic reticulum (ER) by AT-1/SLC33A1 regulates Nε-lysine acetylation of ER-resident and -transiting proteins. Specifically, lysine acetylation within the ER appears to influence the efficiency of the secretory pathway by affecting ER-mediated quality control. Mutations or duplications in AT-1/SLC33A1 have been linked to diseases such as familial spastic paraplegia, developmental delay with premature death, and autism spectrum disorder with intellectual disability. In this study, we generated an AT-1 Tg mouse model that selectively overexpresses human AT-1 in neurons. These animals demonstrate cognitive deficits, autistic-like social behavior, aberrations in synaptic plasticity, an increased number of dendritic spines and branches, and widespread proteomic changes. We also found that AT-1 activity regulates acetyl-CoA flux, causing epigenetic modulation of the histone epitope H3K27 and mitochondrial adaptation. In conclusion, our results indicate that increased expression of AT-1 can cause an autistic-like phenotype by affecting key neuronal metabolic pathways.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |