例如:"lncRNA", "apoptosis", "WRKY"

Role of Fibroblast Growth Factor-5 on the Proliferation of Human Tonsil-Derived Mesenchymal Stem Cells.

Stem Cells Dev.2016 Aug 01;25(15):1149-60. doi:10.1089/scd.2016.0061. Epub 2016 Jul 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Human mesenchymal stem cells (MSCs) are a promising tool for therapeutic applications in cell-based therapy and regenerative medicine, and MSCs from the human palatine tonsils have recently been used as a new tissue source. However, the understanding of the proliferation and differentiation capacity of tonsil-derived MSCs (T-MSCs) is limited. In this study, we compared the proliferative potential of T-MSCs with those of bone marrow MSCs (BM-MSCs) and adipose tissue-derived MSCs (A-MSCs). Additionally, we investigated the underlying mechanism of T-MSC function. We showed that T-MSCs proliferated faster than A-MSCs and BM-MSCs in methylthiazolyl diphenyl-tetrazolium (MTT) assays, cell count assays, and cell cycle distribution analyses. DNA microarray and real-time PCR analyses revealed that the expression of fibroblast growth factor-5 (FGF5) was significantly elevated in T-MSCs compared with those in A-MSCs and BM-MSCs. Cell growth curves showed a difference in cell growth between untreated cells and siFGF5-treated T-MSCs. The administration of recombinant human FGF5 (rhFGF5) to the cells transfected with siFGF5 led to a significant increase in the proliferation rates. The administration of rhFGF5 to T-MSCs led to an increase in the levels of phosphorylated ERK1/2. However, treatment with siFGF5 resulted in an overall decrease in the level of phosphorylated ERK1/2. The osteogenic differentiation of T-MSCs was reduced following siFGF5 transfection, and it recovered to near-normal levels when rhFGF5 was added. These findings indicate that T-MSCs show significantly higher proliferative potential compared with those of BM-MSCs and A-MSCs. FGF5 facilitates cell proliferation through ERK1/2 activation, and it influences the osteogenic differentiation of T-MSCs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读