例如:"lncRNA", "apoptosis", "WRKY"

Association of oligodendrocytes differentiation regulator gene DUSP15 with autism.

World J. Biol. Psychiatry. 2017 Mar;18(2):143-150. doi:10.1080/15622975.2016.1178395. Epub 2016 May 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:Autism is a pervasive neurodevelopmental disorder with high heritability. Genetic factors play crucial roles in the aetiology of autism. Dual specificity phosphatase 15 (DUSP15) has been recognised as a key regulator gene for oligodendrocytes differentiation. A previous study detected one de novo missense variant (p.Thr107Met) with probable deleterious function in exon 6 of DUSP15 among patients with autism. Therefore, we sequenced this mutation in autistic children and performed an association analysis between DUSP15 polymorphisms and autism. METHODS:We performed a case-control study between 255 children affected with autism and 427 healthy controls. Four tag-single nucleotide polymorphisms (SNPs) were selected. These SNPs and the previously reported mutation in exon 6 of DUSP15 were genotyped via Sanger sequencing. RESULTS:Our results showed that rs3746599 was significantly associated with autism under allelic, additive and dominant models, respectively (χ2 = 9.699, P = 0.0018; χ2 = 16.224, P = 0.001; χ2 = 7.198, P = 0.007). The association remained significant after Bonferroni correction and permutation tests (n = 10,000). We did not detect the missense variant p.Thr107Met reported in previous studies. However, a de novo missense variant of DUSP15 (p.Ala56Thr) with a probable disease-causing effect was detected in one autistic child while absent in healthy controls. CONCLUSIONS:Our findings initially suggest that DUSP15 might be a susceptibility gene for autism in Chinese Han population.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读