例如:"lncRNA", "apoptosis", "WRKY"

Activation of Mitofusin2 by Smad2-RIN1 Complex during Mitochondrial Fusion.

Mol. Cell. 2016 May 19;62(4):520-31. Epub 2016 May 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Smads are nuclear-shuttling transcriptional mediators of transforming growth factor-β (TGF-β) signaling. Although their essential nuclear roles in gene regulation during development and carcinogenesis are well established, whether they have important cytoplasmic functions remains unclear. Here we report that Smad2 is a critical determinant of mitochondrial dynamics. We identified mitofusin2 (MFN2) and Rab and Ras Interactor 1 (RIN1) as new Smad2 binding partners required for mitochondrial fusion. Unlike TGF-β-induced Smad2/3 transcriptional responses underlying mitochondrial fragmentation and apoptosis, inactive cytoplasmic Smad2 rapidly promotes mitochondrial fusion by recruiting RIN1 into a complex with MFN2. We demonstrate that Smad2 is a key scaffold, allowing RIN1 to act as a GTP exchange factor for MFN2-GTPase activation to promote mitochondrial ATP synthesis and suppress superoxide production. These results reveal functional implications between Smads and mitochondrial dysfunction in cancer and metabolic and neurodegenerative disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读