例如:"lncRNA", "apoptosis", "WRKY"

Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells.

Cell. Signal.2016 Aug;28(8):1075-85. Epub 2016 May 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In the classical signaling pathway, testosterone regulates gene expression by activating the cytosolic/nuclear androgen receptor. In the non-classical pathway, testosterone activates cytosolic signaling cascades that are normally triggered by growth factors. The nature of the receptor involved in this signaling pathway is a source of controversy. In the Sertoli cell line 93RS2, which lacks the classical AR, we determined that testosterone stimulates the non-classical signaling pathway, characterized by the phosphorylation of Erk1/2 and transcription factors CREB and ATF-1. We also demonstrated that testosterone increases the expression of the tight junction (TJ) proteins claudin-1 and claudin-5. Both of these proteins are known to be essential constituents of TJs between Sertoli cells, and as a consequence of their increased expression transepithelial resistance across Sertoli cell monolayers is increased. ZIP9 is a Zn(2+)transporter that was recently shown to be a membrane-bound testosterone receptor. Silencing its expression in 93RS2 Sertoli cells by siRNA completely prevents Erk1/2, CREB, and ATF-1 phosphorylation as well the stimulation of claudin-1 and -5 expression and TJ formation between neighboring cells. The study presented here demonstrates for the first time that in Sertoli cells testosterone acts through the receptor ZIP9 to trigger the non-classical signaling cascade, resulting in increased claudin expression and TJ formation. Since TJ formation is a prerequisite for the maintenance of the blood-testis barrier, the testosterone/ZIP9 effects might be significant for male physiology. Further assessment of these interactions will help to supplement our knowledge concerning the mechanism by which testosterone plays a role in male fertility.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读