例如:"lncRNA", "apoptosis", "WRKY"

Posttranscriptional Regulation of Gcr1 Expression and Activity Is Crucial for Metabolic Adjustment in Response to Glucose Availability.

Mol. Cell. 2016 May 05;62(3):346-358
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The transcription factor Gcr1 controls expression of over 75% of the genes in actively growing yeast. Yet despite its widespread effects, regulation of Gcr1 itself remains poorly understood. Here, we show that posttranscriptional Gcr1 regulation is nutrient dependent. Moreover, GCR1 RNA contains a long, highly conserved intron, which allows the cell to generate multiple RNA and protein isoforms whose levels change upon glucose depletion. Intriguingly, an isoform generated by intron retention is exported from the nucleus, and its translation is initiated from a conserved, intronic translation start site. Expression of gene products from both the spliced and unspliced RNAs is essential, as cells expressing only one isoform cannot adjust their metabolic program in response to environmental changes. Finally, we show that the Gcr1 proteins form dimers, providing an elegant mechanism by which this one gene, through its regulation, can perform the repertoire of transcriptional activities necessary for fine-tuned environmental response.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读