例如:"lncRNA", "apoptosis", "WRKY"

Shift of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification.

Circ. Res.2016 Jul 08;119(2):261-76. Epub 2016 May 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


RATIONALE:Intimal calcification is highly correlated with atherosclerotic plaque burden, but the underlying mechanism is poorly understood. We recently reported that cartilage oligomeric matrix protein (COMP), a component of vascular extracellular matrix, is an endogenous inhibitor of vascular smooth muscle cell calcification. OBJECTIVE:To investigate whether COMP affects atherosclerotic calcification. METHODS AND RESULTS:ApoE(-/-)COMP(-/-) mice fed with chow diet for 12 months manifested more extensive atherosclerotic calcification in the innominate arteries than did ApoE(-/-) mice. To investigate which origins of COMP contributed to atherosclerotic calcification, bone marrow transplantation was performed between ApoE(-/-) and ApoE(-/-)COMP(-/-) mice. Enhanced calcification was observed in mice transplanted with ApoE(-/-)COMP(-/-) bone marrow compared with mice transplanted with ApoE(-/-) bone marrow, indicating that bone marrow-derived COMP may play a critical role in atherosclerotic calcification. Furthermore, microarray profiling of wild-type and COMP(-/-) macrophages revealed that COMP-deficient macrophages exerted atherogenic and osteogenic characters. Integrin β3 protein was attenuated in COMP(-/-) macrophages, and overexpression of integrin β3 inhibited the shift of macrophage phenotypes by COMP deficiency. Furthermore, adeno-associated virus 2-integrin β3 infection attenuated atherosclerotic calcification in ApoE(-/-)COMP(-/-) mice. Mechanistically, COMP bound directly to β-tail domain of integrin β3 via its C-terminus, and blocking of the COMP-integrin β3 association by β-tail domain mimicked the COMP deficiency-induced shift in macrophage phenotypes. Similar to COMP deficiency in mice, transduction of adeno-associated virus 2-β-tail domain enhanced atherosclerotic calcification in ApoE(-/-) mice. CONCLUSIONS:These results reveal that COMP deficiency acted via integrin β3 to drive macrophages toward the atherogenic and osteogenic phenotype and thereby aggravate atherosclerotic calcification.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读