例如:"lncRNA", "apoptosis", "WRKY"

Positively charged residues within the MYO19 MyMOMA domain are essential for proper localization of MYO19 to the mitochondrial outer membrane.

Cytoskeleton (Hoboken). 2016 Jun;73(6):286-299. doi:10.1002/cm.21305. Epub 2016 May 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Myosins are well characterized molecular motors essential for intracellular transport. MYO19 copurifies with mitochondria, and can be released from mitochondrial membranes by high pH buffer, suggesting that positively-charged residues participate in interactions between MYO19 and mitochondria. The MYO19-specific mitochondria outer membrane association (MyMOMA) domain contains approximately 150 amino acids with a pI approximately 9 and is sufficient for localization to the mitochondrial outer membrane. The minimal sequence and specific residues involved in mitochondrial binding have not been identified. To address this, we generated GFP-MyMOMA truncations, establishing the boundaries for truncations based on sequence homology. We identified an 83-amino acid minimal binding region enriched with basic residues (pI ∼ 10.5). We sequentially replaced basic residues in this region with alanine, identifying residues R882 and K883 as essential for mitochondrial localization. Constructs containing the RK882-883AA mutation primarily localized with the endoplasmic reticulum (ER). To determine if ER-associated mutant MyMOMA domain and mitochondria-associated wild type MyMOMA display differences in kinetics of membrane interaction, we paired FRAP analysis with permeabilization activated reduction in fluorescence (PARF) analysis. Mitochondria-bound and ER-bound MYO19 constructs displayed slow dissociation from their target membrane when assayed by PARF; both constructs displayed exchange within their respective organelle networks. However, ER-bound mutant MYO19 displayed more rapid exchange within the ER network than did mitochondria-bound MYO19. Taken together these data indicate that the MyMOMA domain contains strong membrane-binding activity, and membrane targeting is mediated by a specific, basic region of the MYO19 tail with slow dissociation kinetics appropriate for its role(s) in mitochondrial network dynamics. © 2016 Wiley Periodicals, Inc.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读