例如:"lncRNA", "apoptosis", "WRKY"

Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis.

Biogerontology. 2016 Aug;17(4):749-61. Epub 2016 Apr 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Collagen XVIII has the structural properties of both collagen and proteoglycan. It has been found at the basement membrane/stromal interface where it is thought to mediate their attachment. Endostatin, a proteolytic fragment from collagen XVIII C-terminal end has been reported to possess anti-angiogenic properties. Age-related vision loss in collagen XVIII mutant mice has been accompanied with a pathological accumulation of deposits under the retinal pigment epithelium (RPE). We have recently demonstrated that impaired proteasomal and autophagy clearance are associated with the pathogenesis of age-related macular degeneration. This study examined the staining levels of proteasomal and autophagy markers in the RPE of different ages of the Col18a1 (-/-) mice. Eyes from 3, 6-7, 10-13 and 18 months old mice were enucleated and embedded in paraffin according to the routine protocol. Sequential 5 μm-thick parasagittal samples were immunostained for proteasome and autophagy markers ubiquitin (ub), SQSTM1/p62 and beclin-1. The levels of immunopositivity in the RPE cells were evaluated by confocal microscopy. Collagen XVIII knock-out mice had undergone age-related RPE degeneration accompanied by an accumulation of drusen-like deposits. Ub protein conjugate staining was prominent in both RPE cytoplasm and extracellular space whereas SQSTM1/p62 and beclin-1 stainings were clearly present in the basal part of RPE cell cytoplasm in the Col18a1 (-/-) mice. SQSTM1/p62 displayed mild extracellular space staining. Disturbed proteostasis regulated by collagen XVIII might be responsible for the RPE degeneration, increased protein aggregation, ultimately leading to choroidal neovascularization.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读