例如:"lncRNA", "apoptosis", "WRKY"

Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Cl-/HCO3- exchanger.

J. Gen. Physiol.2016 May;147(5):423-36
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Ae4 (Slc4a9) belongs to the Slc4a family of Cl(-)/HCO3 (-) exchangers and Na(+)-HCO3 (-) cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na(+)-dependent Cl(-)/HCO3 (-) exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na(+) is transported by Ae4 in the same direction as HCO3 (-) (and opposite to that of Cl(-)) and that ion transport is not associated with changes in membrane potential. We also find that Ae4 can mediate Na(+)-HCO3 (-) cotransport-like activity under Cl(-)-free conditions. However, whole cell recordings show that this apparent Na(+)-HCO3 (-) cotransport activity is in fact electroneutral HCO3 (-)/Na(+)-HCO3 (-) exchange. Although the Ae4 anion exchanger is thought to regulate intracellular Cl(-) concentration in exocrine gland acinar cells, our thermodynamic calculations predict that the intracellular Na(+), Cl(-), and HCO3 (-) concentrations required for Ae4-mediated Cl(-) influx differ markedly from those reported for acinar secretory cells at rest or under sustained stimulation. Given that K(+) ions share many properties with Na(+) ions and reach intracellular concentrations of 140-150 mM (essentially the same as extracellular [Na(+)]), we hypothesize that Ae4 could mediate K(+)-dependent Cl(-)/HCO3 (-) exchange. Indeed, we find that Ae4 mediates Cl(-)/HCO3 (-) exchange activity in the presence of K(+) as well as Cs(+), Li(+), and Rb(+) In summary, our results strongly suggest that Ae4 is an electroneutral Cl(-)/nonselective cation-HCO3 (-) exchanger. We postulate that the physiological role of Ae4 in secretory cells is to promote Cl(-) influx in exchange for K(+)(Na(+)) and HCO3 (-) ions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读