例如:"lncRNA", "apoptosis", "WRKY"

The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation.

Plant Signal Behav. 2016 May 03;11(5):e1176819. doi:10.1080/15592324.2016.1176819
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Plants have evolved a large array of transporters and channels that are responsible for uptake, source-to-sink distribution, homeostasis and signaling of nitrate (NO3(-)), which is for most plants the primary nitrogen source and a growth-limiting macronutrient. To optimize NO3(-) uptake in response to changing NO3(-) concentrations in the soil, plants are able to modify their root architecture. Potassium is another macronutrient that influences the root architecture. We recently demonstrated that the Arabidopsis NO3(-) transporter NPF7.3/NRT1.5, which drives root-to-shoot transport of NO3(-), is also involved in root-to-shoot translocation of K(+) under low NO3(-) nutrition. Here, we show that K(+) shortage, but not limiting NO3(-) supply, causes in nrt1.5 mutant plants an altered root architecture with conspicuously reduced lateral root density. Since lateral root development is influenced by auxin, we discuss a possible involvement of NPF7.3/NRT1.5 in auxin homeostasis in roots under K(+) deprivation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读