例如:"lncRNA", "apoptosis", "WRKY"

The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation.

Sci Rep. 2016 Mar 29;6:23339
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Na(+), Li(+)/H(+) antiporter of Escherichia coli (Ec-NhaA) maintains pH, Na(+) homeostasis in enterobacteria. We used isothermal titration calorimetry to perform a detailed thermodynamic analysis of Li(+) binding to Ec-NhaA and several of its mutants. We found that, in line with the canonical alternative access mechanistic model of secondary transporters, Li(+)/H(+) binding to the antiporter is antagonistically coupled. Binding of Li(+) displaces 2 H(+) from the binding site. The process is enthalpically driven, the enthalpic gain just compensating for an entropic loss and the buffer-associated enthalpic changes dominate the overall free-energy change. Li(+) binding, H(+) release and antiporter activity were all affected to the same extent by mutations in the Li(+) binding site (D163E, D163N, D164N, D164E), while D133C changed the H(+)/Li(+) stoichiometry to 4. Most striking, however, was the mutation, A167P, which converted the Ec-NhaA antagonistic binding into synergistic binding which is only known to occur in Cl(-)/H(+) antiporter.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读