[No authors listed]
Understanding the energetics of peripheral protein-membrane interactions is important to many areas of biophysical chemistry and cell biology. Estimating free-energy landscapes by molecular dynamics (MD) simulation is challenging for such systems, especially when membrane recognition involves complex lipids, e.g., phosphatidylinositol phosphates (PIPs). We combined coarse-grained MD simulations with umbrella sampling to quantify the binding of the well-explored GRP1 pleckstrin homology (PH) domain to model membranes containing PIP molecules. The experimentally observed preference of GRP1-PH for PIP3 over PIP2 was reproduced. Mutation of a key residue (K273A) within the canonical PIP-binding site significantly reduced the free energy of PIP binding. The presence of a noncanonical PIP-interaction site, observed experimentally in other PH domains but not previously in GRP1-PH, was also revealed. These studies demonstrate how combining coarse-grained simulations and umbrella sampling can unmask the molecular basis of the energetics of interactions between peripheral membrane proteins and complex cellular membranes.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |