例如:"lncRNA", "apoptosis", "WRKY"

Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana.

Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1396-1408. Epub 2016 Mar 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读