例如:"lncRNA", "apoptosis", "WRKY"

Intermolecular disulfide bond in the dimerization of S-periaxin mediated by Cys88 and Cys139.

Acta Biochim. Biophys. Sin. (Shanghai). 2016 Apr;48(4):326-33. Epub 2016 Mar 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Periaxin is expressed in mammalian Schwann cells and lens fiber cells, and has been identified in a screen for cytoskeleton-associated proteins. Charcot-Marie-Tooth 4F is caused by losses or mutations of theperiaxingene. Theperiaxingene encodes two protein isoforms, namely, L-periaxin and S-periaxin.S-periaxin contains 147 amino acid residues and has an N-terminal PDZ domain. In this paper, S-periaxin was reported to be homodimerized through the formation of intermolecular disulfide bonds with its Cys88 and Cys139 residues under mild oxidation conditions. The covalent dimer of S-periaxin was also observed by western blot analysis and bimolecular fluorescence complementation analyses. S-periaxin dimerization formation could be regulated by cellular redox fluctuations. These results offer a possible mechanism to the formation of periaxin complexes, improvement of complex stability, and establishment of a link between the extracellular matrix and the cytoskeleton.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读